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Theory of water waves derived from a
Lagrangian. Part 1. Standing waves
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(Received 18 April 2000)

A new system of equations for calculating time-dependent motions of deep-water
gravity waves (Balk 1996) is here developed analytically and set in a form suitable
for practical applications. The method is fully nonlinear, and has the advantage of
essential simplicity. Both the potential and the kinetic energy involve polynomial
expressions of low degree in the Fourier coefficients Yn(t). This leads to equations of
motion of correspondingly low degree. Moreover the constants in the equations are
very simple. In this paper the equations of motion are specialized to standing waves,
where the coefficients Yn are all real. Truncation of the series at low values of |n|, say
n < N, leads to ‘partial waves’ with solutions apparently periodic in the time t. For
physical applications N must however be large. The method will be applied to the
breaking of standing waves by the forming of sharp corners at the crests, and the
generation of vertical jets rising from the wave troughs.

1. Introduction
The equations of motion for the irrotational motion of an ideal, incompressible fluid

with a free surface are commonly derived from a Hamiltonian expression, in which the
surface displacement and the velocity potential at the surface are taken as canonical
variables (Zakharov 1968). The evaluation of the potential function generally requires
a Hilbert transformation, and especially in high-order expansions in powers of a
parameter the coefficients in these expansions become extremely complicated; see for
example Glozman, Agnon & Stiassnie (1993). A very much simpler and more natural
system of equations has been introduced by Balk (1996), based on a Lagrangian. In
this system not only are the kinetic and potential energies polynomial expressions of
finite degree (6 4) in the independent coordinates (as opposed to infinite order in
the case of a Hamiltonian system) but the coefficients in these expressions are mainly
low integers. This makes the equations of motion relatively simple to program for
numerical computation, and facilitates the discussion of various approximations.

The Lagrangian scheme introduced by Balk for any general, time-dependent defor-
mation of the free surface (including overturning waves) is in fact a generalization
of the cubic system of equations for steady, progressive Stokes waves discovered by
the present author (Longuet-Higgins 1978). These equations also were found to be
derivable from a low-order polynomial Lagrangian (see Longuet-Higgins 1985).

However, the comparative simplicity of the general Lagrangian system has so far
remained unexploited. The purpose of the present sequence of papers is to show how
Balk’s (1996) analysis can be developed, and to examine some of its applications. We
begin in the present paper with the case of standing waves, periodic in space but not
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necessarily in time. General equations are derived in §§ 2 to 4. An important part in the
analysis is played by the determinant ∆ of the equations of motion, which must not
vanish in order for time-stepping to proceed. It is shown in § 5 that this determinant
factorizes. Some insights can be gained by considering low-order approximations (i.e.
truncations of the Fourier series) as is shown in §§ 6 to 8. High-order approximation
will be used in later papers for a discussion of two phenomena displayed by standing
waves, namely breaking at the wave crests and the forming of strong vertical jets
(‘flip-through’) rising out of the wave trough.

2. The Lagrangian
It is shown by Balk (1996, § 2) that in any two-dimensional irrotational wave motion,

periodic in the (horizontal) x-direction with period 2π, the coordinates (X,Y ) of a
point on the free surface may be expressed in the form

X + iY = ξ +

∞∑
−∞

(Xn + iYn) e−inξ, (2.1)

where X−n = X∗n and Y−n = Y ∗n , a star denoting the complex conjugate; also

Xn = i σnYn, (2.2)

where σn equals +1,−1 or 0 as n is positive, negative or zero respectively. From (2.1)
it follows that

X = ξ +

∞∑
−∞

i σnYn e−inξ,

Y =

∞∑
−∞

Yn e−inξ,

 (2.3)

so that the Yn(t) may be taken as the time-dependent coordinates of the fluid. These
are subject to the constraint that the mean level Y , given by

Y =
1

2π

∫ 2π

0

Y dX = Y0 +
∑
m+n=0

n σn YmYn, (2.4)

shall vanish. Thus we have always

Y0 = −
∞∑
−∞
|n|Yn Y−n. (2.5)

The Lagrangian L is defined as

L ≡ T − V , (2.6)

where V and T are the mean potential and kinetic energy densities per unit horizontal
distance. As in (2.4), V is found directly from (2.3):

2V =

∫ 2π

0

Y 2 dX =
∑
l+m=0

Yl Ym +
∑

l+m+n=0

n σn Yl Ym Yn, (2.7)

all the summations running from −∞ to ∞.
In a similar way, the velocity potential φ(ξ, t) and the streamfunction ψ(ξ, t) at the
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free surface can be expressed in Fourier series analogous to (2.3):

φ =

∞∑
−∞

i σn Bn e−inξ,

ψ =

∞∑
−∞

Bn e−inξ.

 (2.8)

Then the kinetic energy density T is given by

2T =
1

2π

∫ 2π

0

φ dψ =

∞∑
−∞
|n|BnB−n. (2.9)

The crucial step taken by Balk (1996) was to show that the kinematic boundary
condition at the free surface can be expressed as

ψξ = XtYξ − YtXξ, (2.10)

which allows the coefficients Bn to be related directly to the Yn by

i nBn = Ẏn +
∑
l+m=n

(σl − σm)lYlẎm (n 6= 0); (2.11)

a dot denotes d/dt. We can always choose

B0 = 0. (2.12)

It is convenient to write

an =

{
2|n|Yn, n 6= 0
1, n = 0,

(2.13)

so that when, for example, n < 0 (2.11) gives

i nBn = (. . . a2Ẏn−2 + a1Ẏn−1 + a0Ẏn) + 1
2
anẎ0 + (an−1Ẏ1 + an−2Ẏ2 + · · ·). (2.14)

From (2.11) we have also

Ẏ0 = −(. . . a4Ẏ−4 + a3Ẏ−3 + a2Ẏ−2 + a1Ẏ−1)− (a−1Ẏ1 + a−2Ẏ2 + · · ·). (2.15)

3. Standing waves
So far the equations are quite general. However, in standing waves the coordinates

Yn(t) may be chosen to be all real. The above formulae are then simplified and, from
equations (2.8) to (2.13), we find

4T = 1
1
[ 1

1
(1 + a2 − a1a1)ȧ1 + 1

2
(a1 + a3 − a1a2)ȧ2 + 1

3
(a2 + a4 − a1a3)a3 + · · ·]2

+ 1
2
[ 1

1
( a3 − a2a1)ȧ1 + 1

2
(1 + a4 − a2a2)ȧ2 + 1

3
(a1 + a5 − a2a3)ȧ3 + · · ·]2

+ 1
3
[ 1

1
( a4 − a3a1)ȧ1 + 1

2
( a5 − a3a2)ȧ2 + 1

3
(1 + a6 − a3a3)ȧ3 + · · ·]2

+ · · · , (3.1)

or more compactly

4T =

∞∑
m=1

( ∞∑
n=1

Pmn ȧn

)2

, (3.2)
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where

Pmn =
1

m1/2n
(an−m + an+m − am an) (3.3)

provided that an−m is replaced by 0 when n < m. Writing equation (3.2) in the form

4T =

∞∑
m=1

( ∞∑
k=1

Pmk ȧk

)( ∞∑
l=1

Plk ȧl

)
(3.4)

and reversing the order of the summations we obtain

2T =

∞∑
1

∞∑
1

Qkl ȧk ȧl , (3.5)

where

Qkl =
1

2

∞∑
m=1

Pmk Pml. (3.6)

In other words, the matrix of the quadratic form (3.5) is the column-by-column
product of the matrices (Pmk) and (Pml). Note that Pmk is of maximum degree 2 in
the coefficients an. Hence T is of degree 2 in ȧ1, ȧ2, . . . and of maximum degree 4
in a1, a2, . . . .

Consider now the degree of the terms in the potential energy V , given by equation
(2.7). The right-hand side of (2.7) still contains the dependent variable Y0. The first
summation contains term Y 2

0 , while the second contains some terms with no more
than one of l, m, n equal to 0 (for, if any two of l, m, n are zero, then so are all three,
making |l| vanish). Since by (2.5) Y0 is quadratic in the remaining Yn, altogether V
has maximum degree 4 in Y1, Y2, . . . .

4. The equations of motion
As independent coordinates we may take the coefficients a1, a2, . . . defined by

equation (2.13). Lagrange’s equations of motion are then

d

dt

(
∂L
∂ȧn

)
=
∂L
∂an

, n = 1, 2, . . . , (4.1)

which can be written
d

dt

(
∂T

∂ȧn

)
− ∂T

∂an
= − ∂V

∂an
. (4.2)

Consider first the terms involving T . From equation (3.5) we have

∂T

∂ȧn
=

∞∑
l=1

Qnl ȧl (4.3)

and therefore
d

dt

(
∂T

∂ȧn

)
=
∑
l

Qnl äl + Rn, (4.4)

where

Rn =
∑
l

dQnl
dt

ȧl =
∑
l

∑
k

∂Qnl

∂ak
ȧk ȧl . (4.5)
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Also on the left of (4.2) we have from equation (3.5)

∂T

∂an
=

1

2

∑
l

∑
k

∂Qkl

∂an
ȧk ȧl . (4.6)

After combining the two quadratic forms (4.5) and (4.6) and writing the latter more
symmetrically, the left-hand side of equation (4.2) reduces to∑

l

Qnl än −
∑
l

∑
k

Sn(l, k)ȧk ȧl , (4.7)

where

Sn(k, l) =
1

2

(
∂Qkl

∂an
− ∂Qnl

∂ak
− ∂Qnk

∂al

)
. (4.8)

Note that when k = n or l = n, two of the terms in this expression cancel.
In order to calculate ∂Qkl/∂an we have from (3.6)

∂Qkl

∂an
=

1

2

∑
m

(
Pmk

∂Pml

∂an
+ Pml

∂Pmk

∂an

)
(4.9)

while from (3.3)

∂Pml

∂an
= 0

+1 if n = l − m
+1 if n = l + m

−am if n = l

−al if n = m. (4.10)

Lastly for the terms involving V in equations (4.2) and (4.7), note that

∂V

∂an
=

∞∑
k=−∞

∂V

∂Yk

∂Yk

∂an
, (4.11)

where

∂Yk

∂an
=


1

2|n| if k = ±n
−Yk if k = 0

0 otherwise;

(4.12)

also that

∂

∂Yk
(|l| YlYmYn) =


|l| YmYn if k = l

|l| YlYn if k = m

|l| YlYm if k = n.

(4.13)

To summarize, Lagrange’s equations of motion (4.1) can be expressed in the form∑
l

Qnl äl =
∑
l

∑
k

Sn(k, l)ȧk ȧl +Un, n = 1, 2 . . . , (4.14)

where Qnl is of maximum degree 4 in the coordinates a1, a2, . . . , while Sn and Un =
−∂V/∂an are each of maximum degree 3.
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5. Solution of the equations
In order to solve equations (4.14) we may suppose an(t) ≡ 0 for all n greater than

N, say, and proceed by successive approximations as N is increased indefinitely. Given
some starting values for an and ȧn at an initial time t = 0, equations (4.13) comprise
a set of simultaneous equations for determining ä1, ä2, . . . äN . These can be solved
provided that the determinant

∆N = ‖Qij‖ (5.1)

does not vanish. Some interest therefore attaches to the conditions under which

∆N = 0. (5.2)

Now from equation (3.6) we have

∆N =
1

2N
‖Pij‖2 (5.3)

so that the vanishing of ∆N depends solely on the vanishing of ‖Pij‖. Moreover from
equation (3.3) we have

‖Pij‖ =
1

(N!)3/2
DN, (5.4)

where DN is the (N ×N) determinant

DN =

∣∣∣∣∣∣∣∣∣∣∣

(1 + a2 − a1a1) (a1 + a3 − a1a2) (a2 + a4 − a1a3) · · ·
( a3 − a2a1) (1 + a4 − a2a2) (a1 + a5 − a2a3) · · ·
( a4 − a3a1) ( a5 − a3a2) (1 + a6 − a3a3) · · ·

...
...

...

∣∣∣∣∣∣∣∣∣∣∣
. (5.5)

Consider now the (N + 1)× (N + 1) determinant

EN =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 a2 a3 · · ·
a1 (1 + a2) (a1 + a3) (a2 + a4) · · ·
a2 a3 (1 + a4) (a1 + a5) · · ·
a3 a4 a5 (1 + a6) · · ·
...

...
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.6)

On subtracting from the ith column of the determinant ai times the first column we
reduce each element of the first row to 0, except for the first element which is 1. It
follows that

DN = EN. (5.7)

Now in EN the sum of the elements of each column is

1 + a1 + a2 + · · ·+ aN =
∑(+)

, (5.8)

say. Each element in the first row may therefore be replaced by
∑+

. Hence
∑+

is a
factor of the determinant EN . Now multiplying the second row by 2, adding to this
2× each of the other even rows and subtracting from this the first row, we see that
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all the elements of the second row become equal to ±∑(−)
where∑(−)

= 1− a1 + a2 − a3 + a4 − · · · . (5.9)

Hence
∑(−)

is also a factor of EN . After extraction of these two factors the remaining
determinant is

FN =
1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1 · · ·
−1 1 −1 1 · · ·
a2 a3 (1 + a4) (a1 + a5) · · ·
a3 a4 a5 (1 + a6) · · ·
...

...
...

...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (5.10)

Altogether then, from equations (5.3), (5.4) and (5.10) we have

∆N =
1

2N(N!)3

(∑(+)∑(−)
FN

)2

. (5.11)

As will be seen below, the vanishing of
∑(+)

or
∑(−)

is associated with the formation
of a cusp at the free surface.

If TN and VN denote the truncated forms of the kinetic and potential energies, and
if LN = TN − VN we note that an exact integral of the equations

d

dt

(
∂LN

∂ȧn

)
=
∂LN

∂an
, n = 1, 2, . . . N, (5.12)

is

HN ≡ TN + VN = constant. (5.13)

Equation (5.13) may be derived on multiplying each side of (5.12) by ȧn and then
summing with respect to n from 1 to N. For, if f is any function of a1, . . . aN and
ȧ1, . . . ȧN , formally independent of the time t, we have identically

df

dt
=

N∑
1

(
ȧn
∂f

∂an
+ än

∂f

∂ȧn

)

=
d

dt

(
N∑
1

ȧn
∂f

∂ȧn

)
−

N∑
1

ȧn

(
d

dt

∂f

∂ȧn
− ∂f

∂an

)
. (5.14)

When f ≡ LN the last group of terms vanishes by (5.12), and since TN is quadratic
in ȧ1, . . . ȧN we obtain

dLN

dt
=

d

dt
2TN, (5.15)

whence on integration (5.13) follows.
In the following two sections we shall explore the two lowest-order approximations

N = 1 and N = 2. Although their validity is strictly limited to small values of a1 and
a2, the behaviour of the approximations at larger values of a1 and a2, and the manner
in which the approximations fail, will be seen to be of interest in later work.
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Figure 1. Family of surface profiles given by equations (6.1) (the case N = 1).

6. The case N = 1

In the simplest case we set a2 = a3 = · · · = 0, so that the free surface profile is
given by

x = ξ + α sin ξ,

y = Y0 + α cos ξ,

}
(6.1)

where α = a1 and Y0 = − 1
2
α2. This is the parametric equation of a cycloid; see figure

1. Physically admissible solutions are limited to |α| 6 1. When α = ±1 the profile has
a downward-pointing cusp.

The dynamical equations take into account only the self-interaction of the funda-
mental harmonic. Thus from § 2 we have

4T1 = (1− α2)2α̇2,

4V1 = α2 − 1
2
α4.

}
(6.2)

The single Lagrange equation (5.12) becomes

d

dt

[
1
2
(1− α2)2α̇

]
= −α(1− α2)α̇2 − 1

2
α(1− α2) (6.3)

and after dividing through by (1− α2) we obtain

(1− α2)α̈− 2αα̇2 + α = 0. (6.4)

The energy integral (5.13) is

(1− α2)2α̇2 + (α2 − 1
2
α4) = 4H, (6.5)

whence

α̇2 =
4H − α2(1− 1

2
α2)

(1− α2)2
(6.6)
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Figure 2. Graphs of α(t) covering half a wave period, for different values of α0 = α(0),
assuming that α̇(0) = 0.

and

t =

∫ α0

α

(1− α2)

[4H − α2(1− 1
2
α2)]1/2

dα. (6.7)

Equation (6.7) can also be written as

t = ±√2

∫ α0

α

1− α2

[(1− α2)2 − C2]1/2
dα, (6.8)

where

C2 = (1− α2
0)

2 = 1− 8H. (6.9)

Figure 2 shows α as a function of the time t for various values of α0 = α(0), assuming
that at t = 0 the fluid is at rest. When α0 is small, α(t) is simply a sine-wave with
period 2π. Only the section of each curve for which α > 0 is shown. In the hypothetical
limiting case α0 = 1 we have C = 0 and so equation (6.9) gives

t = ±√2(1− α), (6.10)

that is to say a pair of straight-line segments. The crest of the wave then rises or falls
uniformly when t 6= 0, with an instantaneous, large negative acceleration at t = 0.

7. The case N = 2

On writing a1 = α and a2 = β, the free surface is now given by

x = ξ + α sin ξ + 1
2
β sin 2ξ,

y = Y0 + α cos ξ + 1
2
β cos 2ξ,

}
(7.1)

where

Y0 = − 1
2
α2 − 1

4
β2. (7.2)
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Figure 3. Outer limits for the point (α, β) = (a1, a2) in the (α, β)-plane.

Outer limits for α and β are given by the vanishing of ∆N in equation (5.11). Since in
(5.10)

F3 =
1

2

∣∣∣∣∣∣∣
1 1 1

−1 1 −1

β 0 1

∣∣∣∣∣∣∣ = (1− β), (7.3)

the outer limits are given by

(1 + α+ β)(1− α+ β)(1− β) = 0 (7.4)

which represents the three lines

α+ β = −1, α− β = 1 and β = 1. (7.5)

These are shown in figure 3, indicated by the symbols aa, bb and cc respectively.
It appears that whenever the point (α, β) lies on any of the lines (7.5) the corre-

sponding profile (7.1) has a downward-pointing cusp. Some examples, indicated by
the points A, B, C, D and E in figure 3, are shown in figure 4. In addition, there
are limits arising from the need to avoid loops or double points in the profile. These
limits correspond to the curved boundaries in figure 3. Thus (α, β) is limited to the
interior of the triangle defined by the lines (1), (2) and (3), and excluding the shaded
areas in the two upper corners.

The evolution equations are derived from the Lagrangian L2 = T2 − V2 where

4T2 = [(1 + β − α2)α̇+ 1
2
(α− αβ)β̇]2 + 1

2
[αβα̇− 1

2
(1− β2)β̇]2,

4V2 = (α2 + 1
4
β2) + α2β − 1

2
(α2 + 1

2
β2)2.

 (7.6)

The equations of motion for α and β are then

Lα̈+Mβ̈ = − 1
2
[Lαα̇

2 + 2Lβα̇β̇ + (2Mβ −Nα)β̇
2] + C1,

Mα̈+Nβ̈ = − 1
2
[(2Mα − Lβ)α̇2 + 2Nαα̇β̇ +Nββ̇

2] + C2,

 (7.7)
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Figure 4. (a–f) Surface profiles corresponding to the points A to F in figure 3.

where

L = 2(1 + β − α2)2 + α2β2,

M = α(1− β)(1 + β − α2)− 1
2
αβ(1− β2),

N = 1
2
α2(1− β)2 + 1

4
(1− β2)2,

 (7.8)
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Figure 5. (a) Trajectory of (α, β) when N = 2 and with starting values α = 0.4, β = 0, α̇ = β̇ = 0.
Time interval 0 6 t 6 22.3. Interval ∆t between plots = 0.1. (b) As in (a) but with 0 6 t 6 44.6.
(c) Graph of α(t) for (a), showing ten oscillations. (d) Graph of β(t) for (b), showing seven oscillations.

and

C1 = 2α(1 + β − α2)− αβ2,

C2 = α2(1− β)− 1
2
β(1− β2).

}
(7.9)

Some examples of the trajectories of (α, β) are shown in figures 5 to 7. In each case
the motion starts from rest: α̇(0) = β̇(0) = 0, so that the total energy H is just equal
to the initial potential energy V (0).

For disturbances of very small initial amplitude one would expect the coefficients α
and β to oscillate independently, each with its own frequency. Thus α would oscillate
harmonically with frequency 1 and β with frequency

√
2 = 1.414 . . . . The ratio of

the frequencies being irrational, the combined motion would be non-periodic, in the
small-amplitude limit. However, very slight nonlinearity may cause the frequencies to
become compatible, resulting in a periodic orbit. One such example is shown in figure
5(a) where the initial amplitudes are

α = −0.4, β = 0. (7.10)
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Figure 6. (a) Trajectory of (α, β) when N = 2 and with starting values α = 0.4, β = −0.4,
α̇ = β̇ = 0. t = 0.0(0.1)12.7. (b) Graph of α(t) for (a). (c) Graph of β(t) for (a).

The crosses mark points on the trajectory separated by time-intervals 0.1 (one hundred
time steps ∆t). After time t = 22.3 the point (α, β) is close to the opposite point (0.4,
0.0) where, because of conservation of energy, the velocities α are very small. At time
t = 44.6, (α, β) has returned practically to its initial position. In the intervening time,
α has executed seven complete oscillations and β has executed ten (see figures 5b and
5c). So the ratio of ‘frequencies’ is 10÷ 7, i.e. 1.429 approximately.

A simpler example is shown in figure 6(a), where the starting point is

α = 0.4, β = −0.4. (7.11)

At t = 12.8, (α, β) returns to its starting point, α having executed two oscillations
and β three, the ratio of frequencies being 1.5. Compared to α(t), the form of β(t) is
remarkably sinusoidal.

A third example is shown in figure 7(a). Here the initial amplitudes are

α = 0.5, β = 0. (7.12)

The initial energy is sufficiently large that after just over half an oscillation of the
fundamental α(t) the trajectory of (α, β) runs off the scale. The point (α, β) accelerates
toward the boundary, as is shown by the curve of α(t) in figure 7(b). The critical
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Figure 7. (a) Trajectory of (α, β) when N = 2 and with starting values α = 0.5, β = 0, α̇ = β̇ = 0.
(b) Graph of α(t) for (a). (c) Logarithmic plot of α̈(t) near the critical instant tc = 4.211.

time t at which (α, β) crosses the boundary is tc = 4.211 approximately. The final
acceleration |α̈| as t approaches tc is shown in figure 7(c) on a logarithmic scale. The
acceleration varies as |t− tc|λ, where λ is a constant. This behaviour is typical of any
function f(t) satisfying an equation of the form

ff̈ = Cḟ2 (7.13)

when f passes through a zero.
In all of the above numerical integrations the total energy H remained a constant

to within one part in 105.

8. The case N = 3

This last special case to be discussed is the simplest for which not all the factors
of ∆N are linear. Thus from equation (5.11) on writing N = 3 and a1, a2, a3 = α, β, γ
respectively we have

∆3 =
1

123
(1 + α+ β + γ)2(1− α+ β − γ)2F2

4 , (8.1)
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Figure 8. Outer limits for (α, β) = (a1, a2) in the case N = 3, when a3 = 0.5.

where by (5.10)

F4 =

∣∣∣∣∣∣∣∣∣∣

0 1 0 1

−1 1 −1 1

β γ 1 α

γ 0 0 1

∣∣∣∣∣∣∣∣∣∣
, (8.2)

which on expansion gives

F3 = (1− β) + (α− γ)γ. (8.3)

Whereas in (8.1)

1 + α+ β + γ = 0 (8.4)

and

1− α+ β − γ = 0 (8.5)

represent bounding planes in the space of (α, β, γ), the last factor

(1− β) + (α− γ)γ = 0 (8.6)

represents a quadric surface (hyperboloid). Nevertheless the intersection of this surface
with any plane γ = constant is a straight line in that plane. When γ = 0, of course,
equations (8.4), (8.5) and (8.6) reduce to the lines aa, bb and cc of figure 3. In the
more typical case when γ = 0.5, these lines appear shifted as in figure 8. Thus aa
is lowered by an amount γ, bb is raised by γ and cc is tilted with inclination γ and
passes through the point (α, β) = (γ, 1). We may call the triangle formed by aa, bb
and cc the basic triangle.

The origin (0, 0), which corresponds to infinitesimal orbits, always lies in the
interior of the basic triangle so long as |γ| < 1, and it can be verified that points (α, β)
lying on the sides of the basic triangle always correspond to surface profiles having
downwards-pointing cusps.

We show one example of a time-history α(t), β(t), γ(t) when the initial conditions
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Figure 9. (a) Trajectory of (α, β) when N = 3 and with starting values α = 0.4, β = γ = 0,
α̇ = β̇ = γ̇ = 0 (compare figure 5a). (b) Trajectory of (α, γ) corresponding to (a). (c) Root-mean-square
values of α, β and γ as functions of the time t.

are that at time t = 0

α = 0.4, β = γ = 0 (8.7)

and α̇, β̇, γ̇ all vanish as before. A plot of β vs. α alone is shown in figure 9(a), and
the corresponding plot of γ vs. α in figure 9(b). Comparing figure 9(a) with figure
6(a), where the initial conditions were similar except that γ was restricted to be 0, we
see that trajectories of (α, β) appear very different and the motion is less periodic. An
approximate complete cycle 0 < t < 44.0, is shown in figure 9(c).

It will be noted that the r.m.s. values of α, β and γ are all of comparable magnitude.

9. Conclusions and discussion
We have transformed Balk’s (1996) system of equations into a more usable form

and specialized them to the case of standing waves. The general system of equations
(4.14) for the independent coefficients an(t), n = 1, 2, . . . may be truncated at n = N
and used for time-stepping the motion, provided that the determinent ∆N of the
system does not vanish, as is true for sufficiently small an; see equation (5.5).

Low-order representations of standing waves have well-defined zones of existence
in an-space. The boundaries are mostly straight lines or planes. As these boundaries



Theory of water waves derived from a Lagrangian. Part 1 291

are approached, the corresponding surface profiles are found to develop downward-
pointing cusps. In the case N = 2 a choice of simple initial conditions strongly suggests
the existence of periodic ‘waves’ analagous to those corresponding to a truncated
Hamiltonian which were found by Glozman et al. (1993). However, the addition
of a non-zero third harmonic (N = 3) radically affects the periodicity. The motion
then appears to be chaotic, in a way resembling that found in truncated models
of progressive waves. However, as noted by Glozman et al. (1993) the stochastic
properties of truncated models depend strongly on the order of truncation. In order
to study chaos or periodicity in ‘real’ waves it is necessary to take the approximation
to high orders, as was done by Agnon & Glozman (1996) for a Hamiltonian system.
We do not pursue the subject here.

An application of the equations to some interesting aspects of standing-wave
behaviour which require approximations of large order N leading to high numerical
accuracy will be given in a future paper (Longuet-Higgins 2000).

This work has been supported by the US Office of Naval Research under Contract
N00014-94-1-0008.
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